Road infrastructure maintenance in developing countries faces unique challenges due to resource constraints and diverse environmental factors. This study addresses the critical need for efficient, accurate, and locally-relevant pavement distress detection methods in these regions. We present a novel deep learning approach combining YOLO (You Only Look Once) object detection models with a Convolutional Block Attention Module (CBAM) to simultaneously detect and classify multiple pavement distress types. The model demonstrates robust performance in detecting and classifying potholes, longitudinal cracks, alligator cracks, and raveling, with confidence scores ranging from 0.46 to 0.93. While some misclassifications occur in complex scenarios, these provide insights into unique challenges of pavement assessment in developing countries. Additionally, we developed a web-based application for real-time distress detection from images and videos. This research advances automated pavement distress detection and provides a tailored solution for developing countries, potentially improving road safety, optimizing maintenance strategies, and contributing to sustainable transportation infrastructure development.